LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

FIRST SEMESTER – APRIL 2010

CH 1808 - QUANTUM CHEMISTRY & GROUP THEORY

Date & Time: 29/04/2010 / 1:00 - 4:00	Dept. No.		Max.: 100 Marks
---------------------------------------	-----------	--	-----------------

PART-A ANSWER ALL QUESTIONS $(10 \times 2 = 20)$

- 1. Show that the function $\Psi(x,y,z) = \sin x \sin y \sin z$ (where a,b,c are constants) is an eigen function of the Laplacian Operaator ∇^2 . What is its eigen value?
- 2. The accepted wave function Φ for a rigid rotor is Nexp($\pm im\phi$) for $0 \le \phi \le 2\pi$. Determine N.
- 3. Show that the energy $E = 11h^2/8ma^2$ of a particle in a cubic box of side 'a' is triply degenerate.
- 4. What is a well-behaved or acceptable wave function in quantum mechanics?
- 5. Under what conditions an electron would give a continuous or discrete spectrum? Why?
- 6. What is a node? Sketch a rough graph of ψ^2 for n=3 for a particle in 1-D box, and v =3 for the harmonic oscillator model. Indicate the nodes.
- 7. $[L^2,L_x] = ?$ What is its physical significance?
- 8. Write the Hamiltonian operator for the H₂⁺ molecular ion in atomic units defining each term involved in it.
- 9. Explain the principle of mutual exclusion with an example.
- 10. Identify the point groups for the following molecules:
 - (a) Br₂
- (b) CH₃Br
- (c) $[Co(NH_3)_6]^{3+}$
- d) IF₅

PART-B ANSWER ANY EIGHT QUESTIONS $(8 \times 5 = 40)$

- 11. Derive the Schroedinger time-independent wave equation from the time-dependent one.
- 12. What is a hermitian operator and its significance? Show that eigen functions corresponding to two different eigen values of a hermitian operator are orthogonal.
- 13. Show that in spherical polar coordinates the operator for the Z-component of angular momentum becomes $\mathbf{L_z} = -i\hbar\delta/\delta\phi$. Show that the function $\Phi = Ae^{im\phi}$ are eigen functions of $\mathbf{L_z}$ while the functions $\Phi = Asinm\phi$ or $\Phi = Acosm\phi$ are not. Evaluate the normalization constant A in the equation $\Phi = Ae^{im\phi}$.
- 14. Show that the wave function describing the 1s orbital of H-atom is normalized, given: $\Psi_{1s} = (1/\sqrt{\pi}) (Z/a_0)^{3/2} \exp(-Zr/a_0)$. [Useful integral: $0^{\infty} \int x^n e^{-ax} dx = n!/a^{n+1}$]
- 15. Illustrate Bohr's Correspondence Principle and its significance taking any quantum mechanical model.
- 16. The force constant of ⁷⁹Br⁷⁹Br is 240 Nm⁻¹. Calculate the fundamental vibrational frequency and the zero-point energy of the molecule.
- 17. Explain quantum mechanical tunneling with a suitable example.
- 18. Define and explain the overlap, coulomb and resonance integrals which are found in solving H₂⁺ problem using the LCAO method?
- 19. $\psi = (2a/\pi)^{1/4} \exp(-ax^2)$ is an eigen function of the hamiltonian operator $H = -(h^2/8\pi^2 m) d^2/dx^2 + (1/2) kx^2$ for the 1-D Simple Harmonic Oscillator.
 - a) Find the eigenvalue E of $H\Psi = E\Psi$
 - b) Show that the above obtained eigen value in terms of the classical frequency $v = (1/2\pi)\sqrt{(k/m)}$ and the constant $a = (\pi/h)(km)^{1/2}$ is E = (1/2)hv.

- 20. With an example explain: (a) Spherical Harmonics (b) Born-Oppenheimer Approximation.
- 21. Define a "Group' and a 'Class' in group theory? Explain with a suitable example each.
- 22. Define the three parts of a term symbol and write the term symbols arising out of the excited configuration of carbon: 1s²2s²2p¹3p¹.

PART-C ANSWER ANY FOUR QUESTIONS $(4 \times 10 = 40)$

- 23. a) Set up the Schroedinger equation for a particle in 1-D box and solve it for its energy and wave function.
 - b) A cubic box of 10Å on the side contains 12 electrons. Applying the simple particle in a box model, calculate the value of ΔE for the first excited state of this system. (7+3)
- 24. (a) Illustrate the variation method with an example.
 - (b) State the Pauli Exclusion Principle for electrons and show how it is applied to He atom in its ground state. (4+6
- 25. Discuss the Molecular Orbital treatment of H₂ molecule and explain how the Valance Bond (Heitler-London) method overcomes some of the difficulties of MO theory. (10)
- 26. a) What are the three important approximations that distinguish the HMO method from other LCAO methods.
 - b) Write down the secular determinant obtained on applying Huckel's method to 1,3-butadiene and obtain expressions for the energy levels. (3+7)
- 27. a) Write the Schroedinger equation to be solved for H atom and solve it for its energy using a simple solution, which assumes the wave function to depend only on the distance r and not on θ and φ .
 - b) The wave function of 1s orbital of Li^{2+} is $\Psi_{1s} = (1/\sqrt{\pi}) (Z/a_0)^{3/2} \exp(-Zr/a_0)$, where a_0 is the most probable distance of the electron from the nucleus and Z is the atomic number. Show that the average distance is $a_0/2$. [Help: $_0\int^\infty x^n e^{-qx} = n!/q^{n+1}$] (4+6)
- 28. Find the number, symmetry species of the infrared and Raman active vibrations of NH_3 , which belongs to C_{3V} point group. State how many of them are coincident. (You may, if you wish, use the table of f(R) given below for solving this).

D_{3V}	Е	$2C_3$	$3\sigma_{v} \\$		
$egin{array}{c} A_1 \ A_2 \ E \end{array}$	1 1 2	1 1 -1	1 -1 0	$ \begin{array}{c} z \\ R_z \\ (x,y) (R_x,R_y) \end{array} $	$x^{2} + y^{2}, z^{2}$ $(x^{2} - y^{2}, xy) (xz, yz)$

* * * * *